Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tópicos
Tipo del documento
Intervalo de año
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2232081

RESUMEN

Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Proteínas Recombinantes/genética , Vacunas Sintéticas
2.
Particle & Particle Systems Characterization ; 2022.
Artículo en Inglés | Web of Science | ID: covidwho-2030989

RESUMEN

Gold nanoparticles (GNPs) are promising radiosensitizers for cancer radiotherapy. Moreover, they can be used in the same way for radiation processing and sterilization. Such application of GNPs is of practical interest since it may significantly reduce the dose load and expand the application of radiation treatment. In the present study, the high radiosensitization effect of GNPs in relation to viral particles is demonstrated for the first time. The preparations of tobacco mosaic virus (TMV) are used as an experimental model, insofar as this virus has the same properties as animal and human ones but is safe for humans. Irradiation with 45 kVp X-ray to the doses of 4 and 7 kGy leads to a decrease in the infectious activity of TMV virions up to 1.92- and 2.70-fold, respectively. At the same time, irradiation in the presence of 0.4 mg mL(-1) of 12 nm spherical GNPs increases the efficiency of virus inactivation up to 15- and 22-fold. The GNPs enhance both the damage to capsid protein due to the enhanced generation of reactive oxygen species and genome RNA due to the emission of secondary radiation. These results show the great prospects of the application of high-Z nanoparticles in radiation treatment.

3.
Biochemistry (Mosc) ; 87(6): 548-558, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1923158

RESUMEN

Structurally modified virus particles can be obtained from the rod-shaped or filamentous virions of plant viruses and bacteriophages by thermal or chemical treatment. They have recently attracted attention of the researchers as promising biogenic platforms for the development of new biotechnologies. This review presents data on preparation, structure, and properties of the structurally modified virus particles. In addition, their biosafety for animals is considered, as well as the areas of application of such particles in biomedicine. A separate section is devoted to one of the most relevant and promising areas for the use of structurally modified plant viruses - design of vaccine candidates based on them.


Asunto(s)
Bacteriófagos , Virus de Plantas , Animales , Virión
4.
Front Microbiol ; 13: 845316, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1798931

RESUMEN

A recombinant vaccine candidate has been developed based on the major coronaviruses' antigen (S protein) fragments and a novel adjuvant-spherical particles (SPs) formed during tobacco mosaic virus thermal remodeling. The receptor-binding domain and the highly conserved antigenic fragments of the S2 protein subunit were chosen for the design of recombinant coronavirus antigens. The set of three antigens (Co1, CoF, and PE) was developed and used to create a vaccine candidate composed of antigens and SPs (SPs + 3AG). Recognition of SPs + 3AG compositions by commercially available antibodies against spike proteins of SARS-CoV and SARS-CoV-2 was confirmed. The immunogenicity testing of these compositions in a mouse model showed that SPs improved immune response to the CoF and PE antigens. Total IgG titers against both proteins were 9-16 times higher than those to SPs. Neutralizing activity against SARS-CoV-2 in serum samples collected from hamsters immunized with the SPs + 3AG was demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA